
Visual Basic 5
Unsupported Controls and Utilities
Updated March 2, 2003

Dave Liske
Delmar Computing Services
http://www.mvps.org/htmlhelpcenter

When you first load a Visual Basic 5 CD into your machine and run setup.exe, you're
presented with the Master Setup dialog box, which acts more like a web page and
duplicates the artwork from the Visual Basic packaging. The third hyperlink from the top is
labeled "Explore the CD". If you're like most of us, you went right past this and clicked on
"Install Visual Basic" so you could get into it! However, exploring the CD is something we
should go back to. Some of the Microsoft development system CD's contain treasures
most people are unaware of, and this one is no exception.

We're going to go back to the CD now and explore it a bit more. The \tools\unsupprt
directory contains a large number of controls and utilities we know absolutely nothing
about. A slew of these are also useful in developing GUI's for our own applications.

It almost appears as if these controls and utilities were Microsoft in-house samples they
decided were good enough to give out. I’ve also heard a rumor that runs along these
lines: ”When the programmers are coding the extras (bell and whistles) of the program,
sometimes the program manager will cut them off and say ‘No more, I don't care if it’s not
done, they aren't necessary to begin with and we have to meet the ship date’”. Regardless
of why they’re there, or where they came from, the reality is that some of them still need
a little work, but it's nothing which can't be overcome.

In this chapter we'll be looking at:

The MSVBCalendar Control
Dialog Automation Objects
The System Tray Icon Control

I've included the these items since they're freely distributable, along with the sample code
we'll be using throughout this chapter. Also, if you're using Visual Basic 6, you'll find the
Dialog Automation Objects are included in the files for the Package And Deployment Wizard
as dlgobjs.dll. This file has the same version number as the one we're using.

The Disclaimer
Yes, we need to have one of these! Workarounds and “fixes” are going to seem
commonplace with some of these items. But at the same time, we’ve got the code in
most cases. Sooner or later we’ll figure out why these things don’t work quite right and
we’ll be able to fix them. For now, however, we may have to kludge some of it the best
we can.

These, and the other items in the \tools\unsupprt directory of the Visual Basic 5 CD, are
NOT supported by Microsoft. This is better explained by the following sentence from the

bottom of the Help | About box for the MSVBCalendar control, which we’ll be looking at
shortly:

“Warning: This is an unsuported (sic) sample control. Microsoft takes no responsibility for this control
and no official support is available for this control.”

Even though I'm is providing a bit of documentation for some of these items through this
chapter, I can’t take responsibility for them either. Remember, if you intend to use
and/or distribute these items in your own applications, test it, retest it, then test it
again. When you’re done with that, TEST IT SOME MORE! You’ll be the one getting the
telephone calls if you don’t! And then, who ya’ gonna’ call?!?

But these goodies are worth more than just a brief look. They’re quite nicely done and
they deserve some use. In some instances, they’re also a new, rather “sideways” look
at how to accomplish certain tasks which have been accomplished differently up until
now.

We’re going to start with something which has been a long time in coming …

The MSVB Calendar Control
Microsoft Access has always had a nice calendar control. Ever since the first calendar
control was released in an earlier version of the Access Developer’s Toolkit, some Visual
Basic developers have been a little jealous. Sure, calendar controls for Visual Basic from
third-party developers have come and gone, but Visual Basic has never been released
with one of its own.

Well, it has come to pass! There’s quite a nice calendar control in the \tools\unsupprt
directory of the Visual Basic 5 CD that has some extensive capabilities. It’s also
supplied with a rather in-depth test program in order to show off the capabilities of, and
enumerate the properties of, the calendar itself.

Features
An interesting aspect of the MSVBCalendar control is that it’s been supplied not as a
finished *.ocx, but in the form of complete Visual Basic 5 source code. This is
something the Access developers have never had to their advantage. At the same time,
this calendar is fully compatible with 32-bit versions of Access.

Also, the Access calendar control only handles the years from 1900 to 2100. In
comparison, the Visual Basic Calendar Control is not only fully Y2K compatible, it uses a
four-digit year field, and handles the years from 100 AD to 9999 AD without any
problems. Since the source code is provided, the years could easily be extended even
from this point outward. However, I don’t know of a reason to do such a thing as of yet.
Maybe if someone was writing an application for some kind of extensive history exam …

Getting Started
If you're copying the files from the Visual Basic 5 CD, we need to get the code for the
control from the Visual Basic 5 CD and onto the local hard drive. I have a little place
where I’ve placed these kinds of items so I can work with them more easily. We’ll get
the code onto the hard drive, change some file attributes, then get going with a look at
the control itself.

Copying the Source Code
Create a place on your hard drive to store the source code and other files for the items
we’re going to be copying from the CD. For instance, the copy of Visual Basic 5 that I
use is located in the e:\vb directory. Within this directory I’ve created a new folder and
labeled it Projects:

** PrjDir.bmp **

This is the same type of directory used in other development packages for this purpose.
In fact, Microsoft Visual C++ installs a directory similar to this during its own setup
program and saves new projects to it by default.

Load the Visual Basic 5 CD into your CD drive and go to the c:\tools\unsupprt
directory. Within this directory, highlight the Calendar directory:

** CalOrig.bmp **

Right-click on this directory and click Copy from the pop-up menu.

Now, go back to your new Project directory, right-click on it and click Paste. This places
all the source code for the Calendar Control where we can get to it.

When we get ready to run the test program for the control, we’ll do so before creating
the control itself. At this point, the Visual Basic IDE will attempt to write information
back to these files. Before this can occur, we need to change the attributes for these
files since they are currently all “Read-only”.

Open the directory on your hard drive containing the source code you just copied.
Highlight all of the files, excluding the Res subdirectory. This is most easily
accomplished by highlighting the first file in the directory, holding down the Shift key,
then clicking on the last file in the directory.

** H_Light.bmp **

With these files highlighted, right-click on the whole list. Select Properties from the
pop-up menu and the dialog box will appear:

** PropDlg.bmp **

Clear the “Read-only” check box and click the OK button. Then, repeat the last part of this
procedure with the contents of the Res subdirectory.

The Projects
Unless you’ve built a custom control with Visual Basic before, you may not yet be aware
that Visual Basic is capable of hosting more than one project at a time in its IDE. The
code for the calendar control is stored as a pair of projects, one for the control itself and
one for its test program. These projects are named MSVBCldr.vbp and CldrTest.vbp
respectively. There’s also a third project within the files for this control, which is named
Clndr.vbg. This is the group project, which gives the Visual Basic IDE the information
necessary to open both of the other projects at the same time.

Looking At The Code
Start Visual Basic and open the project group Clndr.vbg. Once it loads, the Project
Explorer will look something like this:

** PrjGrp.bmp **

Notice the calendar control MSVBCalendar is made up of at least one of everything, while
the test project contains only a single form. Open this form in design mode, and you’ll
see that it is anything but simple. We’re going to use this form in our discussion on the
various features of the Calendar Control.

Try It Out - Running the Test Project

Press the F5 key to start the test project. The CalendarTest project will be assembled,
and will subsequently present its single form to you with the calendar in place.

** CldrTest.bmp **

Since CalendarTest is bolded in the Project Explorer, this is the project
that will run when you either press the F5 key or select Run \ Start from
the menubar of the Visual Basic IDE. This is set in the Project Explorer
window. Place the mouse cursor directly over the CalendarTest heading
and right-click. You’ll see the top item on the popup menu is “Set as Start
Up”. If you do the same thing with the MSVBCalendar heading, you’ll find
this menu item is disabled. That’s because a control project cannot be
opened without a project to open it into. If there were another project in
this group, one would have its “Set as Start Up” menu item checked and
the other would not.

Click on some of the items on the Test form. You’ll notice that when you click on the
calendar itself to change the highlighted day, or click on the command button with the
caption ‘Set’, entries appear in the list box. Also, when you click on other items on the
form, various properties of the control are changed.

Properties of the Calendar Control
The properties for the MSVBCalendar control are almost identical to those of the Access
calendar control. So, if you’ve used the other control, this one will seem familiar. If
you’re not familiar with it, it’s really not difficult to understand. Let’s take a look at the
properties:

Property Description

Day Returns/Sets the day number of the selected date.

DayColor Returns/Sets the color used for the day numbers

DayFont Returns/Sets the font used for the day numbers

DayNameColor Returns/Sets the color used for the day names (i.e. days of the week)

DayNameFont Returns/Sets the font used for the day names

DayNameFormat Returns/Sets the format to use for the day names (calShortName =
“M”, calMediumName = “Mon”, calLongName = “Monday”)

Month Returns/Sets the month number of the currently selected date (i.e.
calJanuary = 1)

MonthReadOnly Returns/Sets the read-only state of the month navigation combo box

ShowIterrationButto
ns

Returns/Sets the visible state of the previous and next month
navigation buttons

StartOfWeek Returns/Sets the first day of the week which will be displayed in the
left-most column (calUse System = 0, calUseSunday = 1, …
calUseSaturday = 7)

Year Returns/Sets the year number of the currently selected date (4-digit
integer)

YearReadOnly Returns/Sets the read-only state of the year navigation text box

DataBindings Returns/Sets a DataBindings Collection object that collects the
bindable properties that are available to the developer

DataField Returns/Sets a value that binds a control to a field in the current
record

DataSource Sets a value that specifies the data control through which the current
control is bound to a database

The DataBindings, DataField, and DataSource properties aren’t implemented in the form
within the CalendarTest project since there’s no database to go with this sample. If we
need to connect this control to a database, we also need to provide a Data control on
any form we design with this control in order to link the control to the correct database
via the calendar’s DataSource property.

Events of the Calendar Control
Two events can be seen listed in the list box in the test sample whenever you click on a
date on the calendar or click on the ‘Set’ button. The first one is WillChangeDate, whose
syntax looks like this:

WillChangeDate(ByVal NewDate As Date, Cancel As Boolean)

This event indicates that the currently selected date is about to change to the value
NewDate. Immediately after this event, you’ll see the listing for the occurrence of the
DateChanged event:

DateChange(ByVal OldDate As Date, ByVal NewDate As Date)

This occurs immediately after the date value has been changed, and shows both the old
and new dates.

Problem # 1 – Color Properties

DayColor and DayNameColor Properties
If you’ve played around with this control for a little while, you may have noticed
something a bit peculiar regarding the DayColor and DayNameColor properties. Open
the Test Project in Visual Basic’s IDE and, while looking at the properties for the
calendar control, change the DayColor property. You’ll notice it will change for a brief
moment, then changes to be the same as the DayNameColor property when the calendar
gets refreshed. And if you change DayNameColor, the DayColor property also gets
changed!

This problem is solved through changing the source code, as there’s a bug in the code
for the Get DayNameColor property. Let’s have a look at this code:

'--
' DayNameColor Get/Let
'--
' Purpose: Gets and sets the color used for the day numbers
'--
Public Property Get DayNameColor() As OLE_COLOR
 DayColor = mclrDayNames
End Property 'Get DayNameColor()

A simple mistake: setting the DayColor variable to mclrDayNames, instead of setting the
DayNameColor variable to mclrDayNames. Forgetting part of a variable name is easy to
do when the names are so similar. A possibility is that this code was developed from a
copy of the code for the DayColor property, and that this was missed. This is something
to remember when reviewing your own code.

What’s Happening?
The Refresh property does exactly as its name suggests. One of the keys to its overall
performance is that it carries out all of the Get properties in order to fully refresh a
given control. When you set the DayColor property, the code for Let DayColor calls the
Refresh routine:

Public Property Let DayColor(NewVal As OLE_COLOR)
 mclrDay = NewVal
 UserControl.Refresh
End Property 'Let DayColor()

When this occurs, one of the routines called during the Refresh is Get DayColor:

'--
' DayColor Get/Let
'--
' Purpose: Gets and sets the color used for the day numbers
'--
Public Property Get DayColor() As OLE_COLOR
 DayColor = mclrDay
End Property 'Get DayColor()

This provides us with the grief glimpse of the correct color for the days. However, since
the code for Get DayNameColor comes later in the list of routines than the Get
DayNameColor property, the DayColor property ultimately gets set to the color for
DayNameColor, while the DayNameColor Property doesn’t get refreshed at all.

Almost the same thing occurs when you set the DayNameColor property, with a couple
of minor exceptions. The instant the color is changed, mclrDayNames gets properly set.
When the Refresh occurs for this routine, the DayColor gets set to DayNameColor as

well, again via the Get DayNameColor property. Since the DayNameColor property is
not addressed correctly in its Get routine, the box on the OLE_COLOR control in the
properties menu for DayNameColor never changes.

The “Fix”

Repair the Get DayNameColor code as follows:

'--
' DayNameColor Get/Let
'--
' Purpose: Gets and sets the color used for the day numbers
'--
Public Property Get DayNameColor() As OLE_COLOR
 ' DayColor = mclrDayNames
 DayNameColor = mclrDayNames
End Property 'Get DayNameColor()

If you now try to view the test form in design mode without going any further, you’ll see
this:

** ClrErr.bmp **

The calendar control needs to be compiled once before we can check the results of our
fix. Press the F5 key to run the sample, then shut it down. The test form will now show
up as it did the first time we looked at it. Now, go ahead and toy with the DayColor and
DayNameColor properties, and you’ll see that these properties now work correctly.

Once you’ve done this, select ‘Make MSVBCldr.ocx’ from the File menu of the IDE,
making sure to select the c:\windows\system\ directory as its location.

Now What?
This problem was labeled #1, which means that, yes, there’s another one we’ll address a
little later on. Does this indicate that we shouldn’t use this control in our applications?
Of course not. It’s supplied as source code, so anything we find we should go ahead and
repair. Problem #2 is a bit different, and we’ll see how to repair something outside of
the source code.

The reason we receive samples from Microsoft with our development software is to see
how to do things, not only how to accomplish a particular task, but also how to develop
software in a manner consistent with certain software industry standards.

These unsupported controls and utilities are a bit different. Looking deeper at some of
the code for this particular control reveals that we are looking at a work in-progress that
we normally wouldn’t be allowed to see. For instance, the following code is from the
Declarations section of the UserControl for the MSVBCalendar Control:

'--
' Calendar.ctl
'--
' Implementation file for the VB Calendar control sample.
' This control displays a month-at-a-time view calendar that the
' developer can use to let users view and adjust date values
'--
' Copyright (c) 1996, Microsoft Corporation
' All Rights Reserved
'
' Information Contained Herin is Proprietary and Confidential
'--

The bolded line is important, and indicates that this control may not have been intended
as a sample. This may have actually been a control intended to be shipped with Visual
Basic 5 that was turned into an unsupported sample due to time constraints.

The code for the UserControl’s Paint event is also interesting, as it reveals the
uncompleted aspect of this sample:

'change the text color to dark gray to paint the previous month days
'daveste -- 7/31/96
'TODO: this should be replaced with day styles or at least with
 'a property the control the font and color of these other dates
 dcWork.TextColor = RGB(128, 128, 128)

Note the grammar on that one. Definitely incomplete!

There are other TODO lines throughout the code. You’ll find them if you look around a
bit more.

What’s even more interesting is the following code, also from the UserControl portion of
the code:

Private Sub CopyFont(fntSource As StdFont, fntDest As StdFont)
 'daveste -- 8/14/96
 'REVIEW: Is there a better way to do this???!!!

 'if the destination is nothing, create a new font object
 If fntDest Is Nothing Then Set fntDest = New StdFont

 fntDest.Bold = fntSource.Bold
 fntDest.Charset = fntSource.Charset
 fntDest.Italic = fntSource.Italic
 fntDest.Name = fntSource.Name
 fntDest.Size = fntSource.Size

 fntDest.Strikethrough = fntSource.Strikethrough
 fntDest.Underline = fntSource.Underline
 fntDest.Weight = fntSource.Weight
End Sub 'CopyFont()

Good question from the anonymous (“daveste”?) code reviewer, and quite a challenge
for those of us who now have the code. The challenge? Quite simply, this: Finish
designing the control. Complete the TODO items, answer the reviewers questions, and
test the final control for problems like the one we just repaired. Customize it as you’d
like, since you’ve got the source code and the ability to do so. The end result in all of
this will not just be a nifty little calendar control that works to our liking. Rather, this is
a great way to become better developers than we already are.

Try It Out – Usage of the MSVBCalendar Control

In the code provided with this chapter is a sample application we’ll use to see how the
calendar control can be used. Open the project chapter6.vbp and have a look at the
form:

** CalProj.bmp **

If an error occurs during the loading of this project, it’s likely due to the
copy of MSVBCldr.ocx on your system being not quite what the IDE is
looking for. If this happens, the place where the calendar would have
been shown will only show an empty 3-D rectangle. Delete this rectangle,
and ensure that the Microsoft Visual Basic Calendar is selected in the
projects’ components. Then, add the calendar to the project, on this form,
in the place the 3-D rectangle was previously. The default name for the
calendar is Calendar1, which is what I used to develop this sample. None
of the calendar’s properties need to be changed.

Right now there is no code on the form that performs any kind of tasks. The menus are
empty, as are the events of the calendar control itself.

Place the following code in the form’s Load event to set the calendar’s date to the
current date each time the form is opened:

Private Sub Form_Load()

 ' Set the calendar to today's date
 With Calendar1
 .Year = Format(Now, "yyyy")
 .Month = Format(Now, "m")
 .Day = Format(Now, "d")
 .Refresh
 End With

End Sub

Place the following code under the DblClick event of the calendar control Calendar1:

Private Sub Calendar1_DblClick()

 ' Declare the variables
 Dim SelDate As Variant, NowDate As Variant
 Dim SelYear As Integer, SelMonth As Integer, SelDay As Integer

 ' Assemble the date string from the calendar control
 With Calendar1
 SelYear = .Year
 SelMonth = .Month
 SelDay = .Day
 End With
 SelDate = DateSerial(SelYear, SelMonth, SelDay)

 ' Compute today's date
 NowDate = DateSerial((Format(Now, "yyyy")), (Format(Now, "m")), (Format(Now, "d")))

 ' Test to see if the selected date is earlier than today
 If SelDate < NowDate Then

 'If it is...
 Msg = "The date you have selected is earlier than today." & Chr(10) & _
 "Please select today's date or later."
 Style = vbOKOnly + vbExclamation
 Title = "Date Selection Error"
 Response = MsgBox(Msg, Style, Title)

 ' Reset the calendar
 With Calendar1
 .Year = Format(Now, "yyyy")
 .Month = Format(Now, "m")
 .Day = Format(Now, "d")
 .Refresh
 End With

 Else
 ' Load the text box with the selected date
 If Option1.Value = True Then
 ' U.S.A.
 Text1.Text = SelMonth & "/" & SelDay & "/" & SelYear
 Else
 If Option2.Value = True Then
 ' Europe
 Text1.Text = SelDay & "/" & SelMonth & "/" & SelYear
 Else
 ' U.S.A.
 Option1.Value = True
 Text1.Text = SelMonth & "/" & SelDay & "/" & SelYear
 End If
 End If
 End If

End Sub

Place the following code under the option button labeled U.S.A.:

Private Sub Option1_Click()

 ' Load the text box with the selected date
 If Text1.Text = "" Then
 ' Do nothing

 Else
 ' U.S.A.
 Text1.Text = Calendar1.Month & "/" & Calendar1.Day & "/" & Calendar1.Year
 End If

End Sub

This next bit of code goes under the option button labeled Europe:

Private Sub Option2_Click()

 ' Load the text box with the selected date
 If Text1.Text = "" Then
 ' Do nothing

 Else
 ' Europe
 Text1.Text = Calendar1.Day & "/" & Calendar1.Month & "/" & Calendar1.Year
 End If

End Sub

Press the F5 key to run the program. As long as there are no compilation errors, the
form will appear in the center of the screen. If you double-click on a date later than
today’s date, the date value will appear in the text box. However, if you double-click on
a date earlier than today, a message will appear:

** DateErr.bmp **

By default, the date is placed into the text box in the format used in the U.S.A. Click on
the option button labeled Europe and watch the contents of the text box change
appropriately.

How It Works
First we declare the variables we need to accomplish this task. The first two need to be
of the type Variant since they are used with the DateSerial statement:

' Declare the variables
 Dim SelDate As Variant, NowDate As Variant
 Dim SelYear As Integer, SelMonth As Integer, SelDay As Integer

Instead of simply retrieving the value of the selected date from the calendar, we’ll
retrieve it in pieces so we can correctly calculate the value for DateSerial:

 ' Retreive the date from the calendar control
 With Calendar1
 SelYear = .Year
 SelMonth = .Month
 SelDay = .Day
 End With

We then compute the serial value for the selected date.

‘ Compute the selected date
 SelDate = DateSerial(SelYear, SelMonth, SelDay)

Note that the DateSerial function will return an error if the value is -32,768 to 32,767
from the base date of January 1, 1904. This is important due to the range of years
available from this control and the fact that they can be extended even further.

In a similar manner, we then compute today’s date:

' Compute today's date
 NowDate = DateSerial((Format(Now, "yyyy")), (Format(Now, "m")), (Format(Now, "d")))

We need to check if the selected date is earlier than today. If it is, we’ll generate an
error to that effect. Once the message box is cleared, the calendar is refreshed with
today’s date so the user can have another go at it:

' Test to see if the selected date is earlier than today
 If SelDate < NowDate Then

 'If it is...
 Msg = "The date you have selected is earlier than today." & Chr(10) & _
 "Please select today's date or later."
 Style = vbOKOnly + vbExclamation
 Title = "Date Selection Error"
 Response = MsgBox(Msg, Style, Title)

 ' Reset the calendar
 With Calendar1
 .Year = Format(Now, "yyyy")
 .Month = Format(Now, "m")
 .Day = Format(Now, "d")
 .Refresh
 End With

If the selected date is, in fact, today or later, we place the selected date into the text
box in the appropriate format for the locale:

 Else
 ' Load the text box with the selected date
 If Option1.Value = True Then
 ' U.S.A.
 Text1.Text = SelMonth & "/" & SelDay & "/" & SelYear
 Else
 If Option2.Value = True Then
 ' Europe
 Text1.Text = SelDay & "/" & SelMonth & "/" & SelYear
 Else
 ' U.S.A.
 Option1.Value = True
 Text1.Text = SelMonth & "/" & SelDay & "/" & SelYear
 End If
 End If
 End If

The internationalization applied by the option buttons is rather simple, as it places the
date fields into the text box in the correct order for the locale.

Notice that the controls on this form are located on a picture box, which acts as a
container for them. We’ll use this same sample to develop more concepts through the
rest of this chapter. Later on, we’ll be building a scheduling wizard from this form, so
remember to keep track of where it is. However, this is where the other problem comes
in …

Problem # 2 – The Picture Box

The Picture Box as a Container
You may be wondering why this form has a timer on the picture box. Then again, why
would it need a picture box at all? The picture box has everything to do with wizards
developed with Visual Basic's Wizard Manager. We need to see what the problem is and
how to fix it before we get into the more complicated construction of a wizard.

To briefly explain, in a professional Windows application, a wizard is created using a
single form, with the individual buttons (such as ‘Back’ and ‘Next’) having multiple uses.
Off to the left of the screen is a stack of picture boxes, normally at picBox.Left = -
10000. Each picture box contains a collection of controls for a single step of the wizard.
When the wizard is started, only the picture box for the first step is on the form, while
the rest are in the stack to the far left of the screen. When the ‘Next’ button is clicked,
the picture box for the first step is swapped with the one for the second step. If the
‘Back’ button is pressed, the opposite occurs. The process with the ‘Next’ button
continues until the ‘Finish’ button is clicked to close the wizard.

Unfortunately, the problem with the MSVBCalendar control only occurs when it has a
picture box for a container. Remember, it worked just fine with its test program. Let’s
take a look at the problem in greater detail.

Go back into Chapter6.vbp and go to the properties for Timer1. You’ll find that the
Interval property is set to 1, which is in milliseconds. Change this value to 1000, or 1
second, and press F5. For 1 second, the form will look similar to this:

** DateErr.bmp **

Then it gets refreshed and looks as it should:

** CalForm.bmp **

Make sure you set the timer’s interval back to 1 before continuing.

When I first started looking at this problem, I noticed something interesting. If I clicked
within the current month when the calendar was in its incomplete state, all I got were
more individual dates. But if I clicked on the previous or next months, the calendar
recovered fully when it was repainted with the selected month.

I’ve added the timer to the form since simply refreshing the calendar upon Load or
Activate didn’t work. The timer is set for 1 millisecond, but its Enabled property is set to
False at design-time. When the form is shown, the Activate event enables the timer:

Private Sub Form_Activate()

 ' Set the timer for its one-time firing
 Timer1.Enabled = True

End Sub

After the 1 millisecond time period has elapsed, the timer refreshes the calendar, then
promptly disables itself:

Private Sub Timer1_Timer()

 ' Refresh the calendar so it appears correctly
 Calendar1.Refresh

 ' We're done, so disable the timer
 Timer1.Enabled = False

End Sub

This workaround becomes important for the development of wizards or when using a
picture box as a container for other purposes. However, if you’re using the
MSVBCalendar on a form without using a picture box as a container, there’s no need to
implement this solution.

MSVBCalendar GUI Notes
Something to consider: We have the source code for this calendar control, so it should
be quite a simple task to make changes as we see fit. We know how calendars work, as
we’ve been using them most of our lives. Is there anything you would like to change
about this calendar?

My first thought goes to the iteration buttons at the top of the calendar control itself. At
first glance, it’s a bit difficult to understand their exact purpose. As you may have
noticed, the left one moves the calendar to the previous month, while the right one
moves the calendar to the next month. However, the right iteration button is to the
right of the Year text box. How many others think like I do and, at first, believed that
this button on the right would affect the Year? A change to this aspect of the calendar
might look something like this:

** CldrNew.bmp **

In designing user interfaces, it’s important to place items correctly, in the locations the
user will expect them to appear. Doing otherwise will cause unwarranted confusion.
The user shouldn’t require a Help file to use something as simple as a common calendar.

At this point, we’re going to work on the menu structure of our form, looking at the
resulting common dialogs differently then we ever have before.

Dialog Automation Objects
The Windows Common Dialogs, which are provided to us complements of commdlg32.dll,
are quite important in the development of a GUI. All five of the common dialogs, Open
(and Save), Color, Font, Print, and Help, are necessities which are well known to all
computer users, regardless of their operating-system-of-choice. Each one of these
dialogs fulfills a specific need for the user, and we, as developers, need to be aware of

exactly what the user is looking to do when he or she opens one of these dialogs in our
applications.

One of the methods for implementing these dialogs in our applications is through the
CommonDialog control. However, this control has always been a bit confusing to me.
I’ve never quite found an easy way to keep track of all of the coding and flags necessary
to implement a specific usage. Also, since we end up using the same control for various
uses on different forms, the confusion can quickly snowball.

Microsoft has found a better way to implement the common dialogs from Visual Basic …
without the CommonDialog control. All that’s required is a single project reference to a
rather small DLL, using syntax which is easy to understand. By taking the control off
the form, and making the implementation of the common dialogs global to the project, a
lot of the confusion subsequently disappears. The syntax has also been cleaned up a
bit, without all of the cryptic flag settings.

The CommonDialog falls right out of the concept of code reuse with a loud thunk. Let’s
think about this for a moment. The CommonDialog control can be considered to be a
template of sorts, and in using it we access the same template a number of times
throughout a given application. But when else would we consciously place a windowless
control on multiple forms and give it the same purpose in life each and every time, even
duplicating the same code? A couple of aspects of the individual implementations may
be different, but the redundancy can get old rather fast. Also, you're not always using
all of the possible aspects of the control anywhere close to 100% of the time. So we
end up with unused portions of the control, or “dead code”, all through our applications.

In using a global definition for the common dialogs, it’s kind of like placing the
CommonDialog control on a module. We can get to it whenever we need it, only
accessing the portion we need at the time. This is much more efficient.

In fact, for a couple of these dialogs we’ll be placing the implementation in a module and
accessing it whenever we need to, passing various items to new functions and retrieving
the end result. We’ll also discuss how to take care of the user’s personal preferences,
storing them in the registry and retrieving them as they are needed.

A dialog missing from the CommonDialog control is the Page Setup. This dialog has
been included in the Dialog Automation Objects.

The only thing missing from the Dialog Automation Objects is the WinHelp dialog, and
any functions related to it. You should use the WinHelp API for this anyway.

Setting Up The Dialog Automation Objects
We need to install the Dialog Automation Objects before we can use them. Since there’s
no setup program for them, follow these steps:

1 Copy the file dlgobjs.dll from the \Tools\Unsupprt\Dlgobj directory on the
Visual Basic CD to your \Windows\System directory. If you’re installing this under
Windows NT, copy dlgobjs.dll to the \System32 directory.

2 While you’re still looking at the contents of the CD, right click on the file
\Tools\Unsupprt\DlgObj\dlgobjs.reg and left-click on 'Merge' from the popup
menu. This registers the design-time license.

3 To register the DLL itself , select ‘Run’ from the Windows ‘Start’ menu. In the
text box, type “regsvr32.exe c:\windows\system\dlgobjs.dll”. Under
Windows NT, this should be “regsvr32.exe
c:\windows\system32\dlgobjs.dll”. A message should appear telling you
you’ve succeeded.

4 Back in the VB IDE, select "Microsoft Dialog Automation Objects" in the Project
| References Dialog in Visual Basic. This makes the objects available to the
current project.

** DlgRef.bmp **

Available Objects, Their Properties and
Functions
Once we have the reference to Microsoft Dialog Automation Objects, we only need to
open the Object Browser DialogObjects to view the various objects available to us.
There are 5 dialog objects, each one giving us access to a specific dialog box. The
available objects are:

ChooseColor
ChooseFile
ChooseFont
PageSetup
PrintDialog

There are also 5 helper objects which are used by the dialog objects:

Colors
FileNames
Filters
PrinterDevice
Rectangle

We’ll be looking at the dialog objects individually, and within those discussions, we’ll
also look at how the helper objects are used.

The Dialog Objects
In order to use any of the Dialog objects, we need to create an instance of the object we
want to use. This can be accomplished quite simply using the Set statement:

Set ChooseFile1 = New ChooseFile

Now we can use any of the properties and functions of the new object, in this case,
ChooseFile1.

We’re going to be looking at these dialogs in their order of difficulty, starting with the
Color Palette, and continuing through to the Font dialog.

ChooseColor
The ChooseColor object implements the Color Palette dialog, allowing the user to change
the color of something in an application. This dialog is implemented with all of its
custom color functions intact, and can even be opened with custom colors being loaded
from somewhere else, either a set list or from the registry:

** ClrPalet.bmp **

The object’s properties and single function are rather easy to understand, due to
some correctly-named properties:

Property/Function Description

Property Center As Boolean Centers the dialog on the screen

Property Color As Long The currently selected color, or the one to start out
with

Property CustomColors As Colors A collection of up to 16 custom colors

Property hWnd As Long The window this dialog will act modally against,
with 0 being the desktop

Property PreventCustomColors As
Boolean

Disables the "Define Custom Colors>>" button

Property ShowCustomColors As
Boolean

Opens the dialog with the custom colors extended

Function Show() As Boolean Shows the dialog

The helper object named Colors is a collection of custom colors used by the CustomColor
property of the ChooseColor object. This helper object has two properties:

Property Description

Property Count As Long Provides a count of the custom colors

Property Item(Index As Long) As
Long

Provides an index of the individual custom colors

At this point in each of the following descriptions, we’re going to be looking at examples
of the dialogs. Each of the examples will listing each property or function at least once.
This way, you can see a little clearer how to use each one.

Try It Out – Calling The Color Palette

This is the first dialog we’ll be calling from a function in a module. In doing so, we can
call it more than once without having to rewrite it each time. This is particularly
important when it comes to custom colors. Otherwise, we end up with a number of
custom color arrays in the registry, one for each form we call the Color dialog from.

Add a module to the project Chapter6.vbp and add the following function to it:

Public Function SelectColor(ColorNumber As Long) As Long

 Dim n As Integer, i As Integer

 ' Create an instance of the ChooseColor object
 Set ChooseColor1 = New ChooseColor

 With ChooseColor1
 ' Get the custom colors from the registry
 For n = 0 To 15
 .CustomColors(n) = GetSetting("Chapter6", _
 "Startup", "CustomColors(" & n & ")", "0")
 Next n

 ' Center the dialog on the screen
 .Center = True

 ' Set the initial color
 .Color = ColorNumber

 ' The window this dialog will operate
 ' modally against (0 = desktop)
 .hWnd = 0

 ' Indicate whether or not the user can
 ' expand the custom colors
 .PreventCustomColors = False

 ' Whether or not the custom colors are
 ' expanded by default
 .ShowCustomColors = False

 ' Show the dialog
 .Show

 ' Write the custom colors to the registry
 For i = 0 To 15
 SaveSetting "Chapter6", "Startup", _
 "CustomColors(" & i & ")", .CustomColors(i)
 Next i

 End With

 ' Return the selection
 SelectColor = ChooseColor1.Color

End Function

This function creates a new ChooseColor object, then loads the 16 custom colors from
the registry. If the registry settings don’t exist yet, all of the individual colors are set to
“0”, or black. The dialog is centered on the screen, and the initial color is set to the
variable “ColorNumber”. This is the variable that is passed to this function from the
procedure calling it, and is the current color of the item to have its color changed. Three
other properties are set before showing the form. The hWnd property is set to 0 so the
Color dialog acts modally against the desktop. The PreventCustomColors is set to False.
Doing so allows the custom colors to be shown, enabling the "Define Custom Colors>>"
button. ShowCustomColors is also set to False, meaning the custom colors are not
extended when the dialog is first displayed. Then, the Color dialog is finally shown.

The function continues once the Color dialog is closed. Immediately, the custom colors
are written to the registry. Then, the newly selected color is returned to the calling
procedure and the function ends.

Try It Out - Implementing The SelectColor Function
Add the following code to the Load event of Form1 in Calendar.vbp:

Private Sub Form_Load()

 SaveSetting "Chapter6", "Startup", "TestSetting", "Test"

 With Calendar1
 ' Set the calendar to today's date
 .Year = Format(Now, "yyyy")
 .Month = Format(Now, "m")
 .Day = Format(Now, "d")

 ' Set the colors
 .DayColor = GetSetting("Chapter6", "Startup", "DayColor", "0")
 .DayNameColor = GetSetting("Chapter6", "Startup", "DayNameColor", "0")

 ' Update the settings

 .Refresh
 End With

End Sub

This will retrieve the colors we save to the registry for the calendar’s DayColor and
DayNameColor properties. Using the Refresh method ensures the properties are
updated every time the calendar is opened. This routine also writes a test setting to the
registry, which we’ll be discussing shortly.

Add this code to the mnuViewColorDayColor_Click event:

Private Sub mnuViewColorDayColor_Click()

 ' Set the calendar's DayColor property via the Color dialog
 Calendar1.DayColor = SelectColor(Calendar1.DayColor)

 ' Save the DayColor property to the registry
 SaveSetting "Chapter6", "Startup", "DayColor", Calendar1.DayColor

End Sub

To ensure the same functionality is available for the calendar’s day names, add the
following code to the mnuViewColorDayNameColor_Click event:

Private Sub mnuViewColorDayNameColor_Click()

 ' Set the calendar's DayNameColor property via the Color dialog
 Calendar1.DayNameColor = SelectColor(Calendar1.DayNameColor)

 ' Save the DayNameColor property to the registry
 SaveSetting "Chapter6", "Startup", "DayNameColor", Calendar1.DayNameColor

End Sub

Now, add this code to the click event of the mnuToolsRestoreDefaults menu item:

Private Sub mnuToolsRestoreDefaults_Click()

 Dim TestItem As String

 ' Check the test setting
 TestItem = GetSetting("Chapter6", "Startup", "TestSetting", "")

 ' If the test setting is clear, the settings don't exist
 If TestItem = "" Then
 ' Do Nothing

 Else
 ' Clear the settings if there are any
 DeleteSetting "Chapter6", "Startup"
 End If

 With Calendar1

 ' Reset the colors to black
 .DayColor = 0
 .DayNameColor = 0

 End With

End Sub

This last routine erases any of the registry settings we’ve previously written in this
section. This way, remnants from this chapter aren’t taking up space in your registry
forever! It also restores the color properties to their default setting of “black” (0).

This is also where the TestSetting in the registry is used, which was mentioned a short
while ago. If the test setting is returned as an empty string, this indicates this area of
the registry is empty and the DeleteSettings procedure is not called (if it were called, an
error would result). Otherwise, the DeleteSettings procedure deletes the entire section.

The individual procedures mnuViewColorDayColor_Click() and
mnuViewColorDayNameColor_Click() save their particular setting to the registry. This
would be difficult to do in the SelectColor function without passing a number of
parameters to it.

Press F5, or select Start from Visual Basic’s Run menu. Click on the Day Name Color
menu item:

** DayName.bmp **

The Color dialog will appear, with the black color selected, the custom colors all set to
black, and the custom color selection area not extended. Change the current selection,
making sure to load up some of the 16 custom colors boxes with new colors. Once you
close the dialog, the calendar’s day names will be changed to the selected color.

Now select Day Color from the form’s menu. When the Color dialog appears, the custom
colors will be loaded with the ones you’d previously selected. Select a new color and
close the Color dialog. The colors of the days in the calendar grid will be changed to the
new selection.

Finally, click Restore Default Settings from the Tools menu. The DayColor and DayName
color properties will return to black.

Color Palette GUI Notes
The selected color is normally assigned to a particular item in our application. Keeping in
mind that the user may have selected some overall Windows color scheme having some
semblance of weirdness, we really don't want to assign custom colors to controls. In this
case, we need to open the Color Palette dialog without the custom colors being extended,
and having the "Define Custom Colors>>" button being disabled.

Note that the menu items are designed with Day Name Color being above Day Color. This
follows the layout of the calendar itself, where the day names are at the top of the grid.
In the code for the calendar, these items were seen in reverse order from this due to
alphabetization by Visual Basic and whoever originally wrote the code. It would be easy to
accidentally design the menu items to follow the structure of the code, which would be
confusing to the user. Be sure to place first things first and last things last as the user will
see them to prevent this kind of confusion.

How It All Works
Since the Dialog Automation Objects are not supplied as source code, we need to
determine how they are were developed, in case they’re not supplied to us in the future.
The API Viewer on the Add-In’s menu in the IDE provides this information.

The Dialog Automation Objects are implemented as an ActiveX DLL. The individual
dialog objects are declared via the Windows API, such as the following declaration for
ChooseColor:

Declare Function ChooseColor Lib "comdlg32.dll" Alias "ChooseColorA" _
 (pChoosecolor As CHOOSECOLOR) As Long

The type CHOOSECOLOR is declared in the same area of the DLL’s source code as the
above API declaration:

Type CHOOSECOLOR
 lStructSize As Long
 hwndOwner As Long
 hInstance As Long
 rgbResult As Long
 lpCustColors As Long
 flags As Long
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As String
End Type

Using this information, the entire ChooseColor class, including the individual properties,
is developed. The properties we’re using fill in the blanks in the CHOOSECOLOR type.
The ChooseColor.Show property we’ve used in our own code calls the API through the
ChooseColorA function, which then uses the CHOOSECOLOR type, and everything is set
up correctly to display the Color dialog.

ChooseFile
The ChooseFile object gives us access to both the Open and Save As dialog boxes. We’ll
go ahead and take a look at both of these dialogs so we can be clear on the differences
between the two implementations.

There are a few more properties for this object than for ChooseColor, but still only the
one .Show function:

Property/Function Description

Property Center As Boolean Centers the dialog on the screen

Property Directory As String The directory to open, or the chosen directory

Property FileMustExist As
Boolean

Whether or not the file must exist to be chosen (Open
dialog only)

Property FileName As String The name of the file to look for, or the file selected

Property FileNames As FileNames A collection of file names in a multiselect dialog

Property Filters As Filters A collection of file extension filters

Property HideReadOnly As
Boolean

Whether or not to show the Read-only checkbox (Open
dialog only)

Property hWnd As Long The window the dialog will act modally against, with 0
being the desktop

Property MultiSelect As Boolean Whether or not the dialog permit the selection of multiple
files

Property OverwritePrompt As
Boolean

Whether or not the system will prompt the user prior to
overwriting a file

Property ReadOnly As Boolean True if the file is Read-only

Property Save As Boolean True to show the Save dialog, False for Open

Property Title As String The new title of the dialog

Function Show() As Boolean Shows the dialog

Two more of the helper objects are used by ChooseFile. The first one is FileNames, and
is used for multiple file selections:

FileNames

Property Description

Property Count As Long A count of the multiple file names

Property Item(Index As Long) As
String

The index of each individual file name

The second helper object is Filters, which we’ll use to load the Type drop-down box in
the dialog via a collection of Filter items:

Filters

Property Description

Property Count As Long A count of the filters in the collection

Property Item(Index As Long) As
String

The index of each individual filter

Sub Add(bstrNew As String) Adds a filter to the collection

Sub Remove(Index As Long) Remove a filter from the collection

Try It Out – The “Save As” Dialog

** SaveAs.bmp **

There are quite a few items in this dialog which will change depending on the specific
usage. The directory is one item, as are the file name, filters, title, and multiple file
selections. It makes more sense to place individualized code under each Save As menu
item than to have a common function and pass all of these variables to and from the
function.

Place the following code under the mnuFileSaveAs_Click event in our Chapter6 sample:

Private Sub mnuFileSaveAs_Click()

 ' Create the new object
 Set ChooseFile1 = New ChooseFile

 With ChooseFile1

 ' Center the dialog
 .Center = True

 ' Specify the default directory
 .Directory = GetSetting("Chapter6", "Startup", _
 "SaveAsDirectory", "c:\windows\system\")

 ' Does not apply to the Save dialog
 '.FileMustExist = True

 ' File to be initially selected
 .filename = "dlgobjs.dll"

 ' Load the Filter drop-down box
 With .Filters
 .Add "Executables (*.exe,*.dll):*.exe;*.dll"
 .Add "Documents (*.doc,*.txt):*.doc;*.txt"
 .Add "Stuff (*.stf):*.stf"
 .Add "All Files (*.*):*.*"
 End With

 ' Does not apply to the Save dialog
 '.HideReadOnly = True

 ' The window this dialog will operate
 ' modally against (0 = desktop)

 .hWnd = 0

 ' Allow the user to select more than one file
 .MultiSelect = True

 ' Prompt before overwriting a file
 .OverwritePrompt = True

 ' Does not apply to Save As
 '.ReadOnly = False

 ' Save? Or Open?
 .Save = True

 ' Retitle the dialog
 .Title = "Save This Stuff As..."

 ' Show the dialog
 .Show

 ‘ Save the new default directory
 SaveSetting "Chapter6", "Startup", "SaveAsDirectory", .Directory

 If (.filename = "") Then
 ' Handler in case 'Cancel' is selected
 Exit Sub
 Else
 ' Place save code here
 End If

 End With

End Sub

Since we’re not actually saving anything at this point, toward the bottom you’ll see
“Place save code here”. We’ll replace this comment with code to save something in a
later chapter.

Start the Chapter6 project and select Save As from the File menu. The Save As dialog
will appear as it was shown at the beginning of this section. Change the directory to
something different than the default of c:\windows\system\, which is given in the
GetSettings statement. Close the dialog, then open it again. Since the SaveSettings
statement wrote the directory you chose to the registry, this is the directory which is
selected when you open the dialog again.

Try It Out – The “Open” Dialog

** Open.bmp **

The Open dialog is almost identical to the Save As dialog in its implementation. Place
the following code in the mnuFileOpen_Click event:

Private Sub mnuFileOpen_Click()

 ' Create the new object
 Set ChooseFile1 = New ChooseFile

 With ChooseFile1

 ' Center the dialog
 .Center = True

 ' Specify the default directory
 .Directory = GetSetting("Chapter6", "Startup", _
 "OpenDirectory", "c:\windows\system\")

 ' Does not apply to the Save dialog
 .FileMustExist = True

 ' File to be initially selected
 .filename = "dlgobjs.dll"

 ' Load the Filter drop-down box
 With .Filters
 .Add "Executables (*.exe,*.dll):*.exe;*.dll"
 .Add "Documents (*.doc,*.txt):*.doc;*.txt"
 .Add "Stuff (*.stf):*.stf"
 .Add "All Files (*.*):*.*"
 End With

 ' Hide the Read-only checkbox?
 .HideReadOnly = False

 ' The window this dialog will operate
 ' modally against (0 = desktop)
 .hWnd = 0

 ' Allow the user to select more than one file
 .MultiSelect = True

 ' Prompt before overwriting a file

 .OverwritePrompt = True

 ' Read-only checkbox checked?
 .ReadOnly = True

 ' Save? Or Open?
 .Save = False

 ' Retitle the dialog
 .Title = "Open Some Stuff"

 ' Show the dialog
 .Show

 ' Save the new default directory
 SaveSetting "Chapter6", "Startup", "OpenDirectory", .Directory

 If (.filename = "") Then
 ' Handler in case 'Cancel' is selected
 Exit Sub
 Else
 ‘ Place open code here
 End If
 End With

End Sub

Notice the same point about the directory as in the Save As dialog. The GetSetting and
SaveSetting statements are, in fact, identical in both cases, except for the registry key
being “SaveAsDialog” in one instance, and “OpenDialog” in the other.

How It Works
After creating the new dialog object ChooseFile1, we make sure it will be centered on
the screen. The GetSetting statement does its job to get the default directory, and we
specify that the file must exist (which seems strange since we’re looking at a current list
of the directory!) Following the naming of the file we’re looking for, we lay out the
collection of filters, making sure to include the filter for “All Files *.*”. The
HideReadOnly property is set to False so the Read-only check box will be shown. The
hWnd property is set as in the Color dialog, and we also set MultiSelect to True so the
user can select more than one file. Setting OverwritePrompt to True provides a message
box to appear before the user overwrites a file that already exists. The Save property
sets the dialog for Save or Open functionality, and we also retitle the dialog to
something appropriate to the application.

After the dialog is closed, SaveSetting is used to write the directory to the registry, and
the procedure finishes with the open statement we’ll fill in later.

PageSetup
The Page Setup dialog is an extra dialog available from the Dialog Automation Objects.
Since this dialog is not available from the CommonDialog control, we’ll do a little extra with
it.

The properties are, once again, appropriately named for their functions. Notice there
are fewer properties for this dialog than even for the Color dialog:

Property/Function Description

Property Center As Boolean Centers the dialog on the screen

Property DisableMargins As Boolean Whether or not the Margins section of the
dialog is disabled

Property DisableOrientation As Boolean Whether or not the Orientation section of the
dialog is disabled

Property DisablePaper As Boolean Whether or not the Paper section of the
dialog is disabled

Property DisablePrinter As Boolean Whether or not the Printer section of the
dialog is disabled

Property hWnd As Long The handle of the window this dialog will act
modally against, with 0 being the desktop

Property Margins As Rectangle The margins set by the user, relative to the
top and left edges of the paper

Property MinimumMargins As Rectangle The minimum margins allowed, relative to
the top and left edges of the paper

Property PreventWarning As Boolean Whether or not a message will appear if no
default printer is selected

Property PrinterDevice As PrinterDevice The actual printer device (see below)

Function Show() As Boolean Shows the dialog

Printer Device
The PrinterDevice object is used for returning the specifics for the printer to be used. At
the end of our sample procedure, we’ll enumerate this to see exactly what the values
become for our selection:

Property Description

Property Copies As Integer Number of copies to be printed

Property Default As Boolean Whether or not the selected printer is the
default

Property Driver As String The OEM name of the printer driver

Property DriverVersion As Integer The driver’s version number

Property Name As String Common name for the selected printer

Property Orientation As Integer 1 = portrait, 2 = landscape

Property Output As String Port to be printed to (i.e., LPT1) or “FILE”

Property PaperSize As Integer Size of the paper, as designated by the OEM
(i.e., Hewlett-Packard 8 _ x 11 inch = 1)

Rectangle
The Rectangle object is used to set the MinimumMargin and Margin properties, relative
to the edge of the selected paper size:

Property Bottom As Long

Property Left As Long

Property Right As Long

Property Top As Long

Try It Out – The Page Setup Dialog

Add the following code to the mnuFilePageSetup_Click event of the form in
Chapter6.vbp:

Private Sub mnuFilePageSetup_Click()

 ' Create the new object
 Set PageSetup1 = New PageSetup

 With PageSetup1

 ' Center the dialog
 .Center = True

 ' Set the Disable properties
 .DisableMargins = False
 .DisableOrientation = False
 .DisablePaper = False
 .DisablePrinter = False

 ' Window the dialog will act
 ' modally against (0 = desktop)
 .hWnd = 0

 'Set the margins (in 1/1000ths of an inch)
 With .Margins
 .Top = 500
 .Left = 500
 .Right = 500
 .Bottom = 1000
 End With

 'Set the minimum margins
 ' (in 1/1000ths of an inch)
 With .MinimumMargins
 .Top = 250
 .Left = 250
 .Right = 250
 .Bottom = 750
 End With

 ' Suppress "No default printer" warning
 .PreventWarning = False

 ' Show the dialog
 .Show

 If (.PrinterDevice.Name = "") Then

 ' Handler if Cancel is selected
 Exit Sub

 Else
 With .PrinterDevice
 ' Return the selected settings
 MsgBox "You selected:" & Chr(10) & _
 Chr(9) & "Copies: " & .Copies & Chr(10) & _
 Chr(9) & "Default: " & .Default & Chr(10) & _
 Chr(9) & "Driver: " & .Driver & Chr(10) & _
 Chr(9) & "Driver Version: " & .DriverVersion & Chr(10) & _
 Chr(9) & "Printer Name: " & .Name & Chr(10) & _
 Chr(9) & "Orientation: " & .Orientation & Chr(10) & _
 Chr(9) & "Output: " & .Output & Chr(10) & _
 Chr(9) & "Paper Size: " & .PaperSize & Chr(10) & _
 Chr(9) & "Top Margin: " & PageSetup1.Margins.Top & Chr(10) & _
 Chr(9) & "Left Margin: " & PageSetup1.Margins.Left & Chr(10) & _
 Chr(9) & "Right Margin: " & PageSetup1.Margins.Right & Chr(10) & _
 Chr(9) & "Bottom Margin: " & PageSetup1.Margins.Bottom
 End With
 End If

 End With
End Sub

This isn’t a very complicated procedure, but the list of information it returns is quite
large. Because of this, we can’t very well create a function out of it in any practical
manner.

When you start the project from the Run menu and select File | Page Setup, the dialog
box will appear as specified:

** PgSetup.bmp **

Go through this dialog and make changes to its settings. This dialog acts in the same
way as it does in Microsoft Word and other Windows 95 programs. If you change the
Margin settings, you’ll notice that it’s not possible to set the margins smaller than the
MinimumMargin property settings. Also, the Printer button shows the PrinterSelection
dialog:

** PntSetup.bmp **

Selecting a printer is as simple as making a new selection from the Name dropdown box.
Pressing the Properties button calls the OEM property page for the selected printer.

When you close all the other dialogs and select the OK button on the Page Setup dialog, a
message box will appear, showing all of the selections we made, which are necessary for
the printing of a document:

** SetupMsg.bmp **

This information is then used to setup whatever document we’re going to print.

A few of these items seem rather cryptic and need a bit of explanation. For instance,
the WINSPOOL driver indicates we’re spooling the printing through the Windows Print
Manager. The orientation is 1 for portrait, whereas 2 would be for landscape. And
Paper Size? For this printer, there are a large number of sizes. 1 is for letter size, or 8
_ x 11 inches, 5 is for legal size, which is 8 _ x 14 inches, 9 gives us A4 size paper,
being 210 x 297 mm, and so on.

PrintDialog
The Print dialog is quite similar to the Page Setup dialog in many respects, to the point
where it uses the same type of PrinterDevice object to relay information about the
printer. It does have a few more properties to get the job done:

Property/Function Description

Property Center As Boolean Centers the dialog on the screen

Property DisablePageNumbers As Boolean Disables the Page Numbers section of the
dialog

Property DisablePrintToFile As Boolean Disables the Print To File section of the dialog

Property DisableSelection As Boolean Disables the Page Selection section of the
dialog

Property hWnd As Long Handle of the window this dialog will act
modally against, with 0 being the desktop

Property MaxPage As Long Maximum page the user can select for
printing

Property MinPage As Long Minimum page the user can select for
printing

Property PreventWarning As Boolean Whether or not a message will appear if no
default printer is selected

Property PrinterDevice As PrinterDevice The actual printer device (see description in
the Page Setup section)

Property PrintRange As Long Declaration of which pages to print

Property PrintToFile As Boolean Whether or not to print to a file

Property ShowPrintToFile As Boolean Whether or not to show the Print To File
check box

Function Show() As Boolean Shows the dialog

Try It Out – The Print Dialog

Place the following code under the mnuFilePrint_Click event on the form in our Chapter6
sample:

Private Sub mnuFilePrint_Click()

 ' Create the new object
 Set PrintDialog1 = New PrintDialog

 With PrintDialog1

 ' Center the dialog
 .Center = True

 ' Set the Disable properties
 .DisablePageNumbers = False
 .DisablePrintToFile = False
 .DisableSelection = False

 ' Window the dialog will act
 ' modally against (0 = desktop)
 .hWnd = 0

 ' Suppress "No default printer" warning

 .PreventWarning = False

 ' Set the Print To File characteristics
 .PrintToFile = True
 .ShowPrintToFile = True

 .PrintRange = 2

 ' Show the dialog
 .Show

 If (.PrinterDevice.Name = "") Then

 ' Handler if Cancel is selected
 Exit Sub

 Else

 ' Place print code here

 End If
 End With

End Sub

When you start the Chapter6 sample from the Visual Basic IDE and click the File | Print
command, you’ll see this dialog box:

** PrintDlg.bmp **

Compared with some of the other dialogs in this group, this one was rather simple.

Following is the discussion for the Font dialog, likely the most complicated one of them
all.

ChooseFont
As complex as the Font dialog can be, we can still implement it as a function and call the
single function from anywhere in our program. This is accomplished through the use of
the StdFont object, which encapsulates all of the properties of a font into a single object.
All we need to do is call the function that calls the Font dialog, and the font is returned
as a StdFont object.

The Font dialog is implemented without any helper objects … except the IFontDisp type
for the GetFont() function. We don’t need to worry about this one since Visual Basic
takes care of it through OLE:

Property/Function Description

Property Center As Boolean Centers the dialog on the screen

Property Color As Long The color to be applied to the font

Property FaceName As String Name of the font (i.e., “MS Sans Serif”)

Property FixedPitchOnly As
Boolean

If True, only shows fixed-pitch fonts

Property ForceFontExist As
Boolean

Whether or not the font must exist

Property Height As Long Height of the font (i.e., 10)

Property hWnd As Long Handle of the window this dialog will act modally
against, with 0 being the desktop

Property Italic As Boolean Whether or not the font is italicized

Property ShowEffects As Boolean If True, show the Effects section of the dialog

Property ShowPrinterFonts As
Boolean

Whether or not to show printer fonts in the listing

Property ShowScreenFonts As
Boolean

Whether or not to show screen fonts in the listing

Property ShowVerticalFonts As
Boolean

Whether or not to show vertical fonts in the listing

Property SizeMax As Long Maximum size allowed (also refered to as Height)

Property SizeMin As Long Minimum size allowed (also refered to as Height)

Property StrikeOut As Boolean Whether or not the selected font has the Strikeout
effect applied

Property TrueTypeOnly As
Boolean

If True, only shows True Type fonts

Property Underline As Boolean Whether or not the selected font has the Underline
effect applied

Property Width As Long Width of the font, for style (i.e., 400 = Regular, 700 =
Bold, etc.)

Function GetFont() As IFontDisp Gets the selected font from the dialog as a Font object

Function Show() As Boolean Shows the dialog

The ShowEffects setting must be set to True prior to setting the StrikeOut,
Underline, or Color effects. Otherwise, an error will occur.

Try It Out – Using The Font Dialog

Add the following function to the module we created earlier in the Chapter6 project:

Public Function SelectFont() As StdFont

 Dim NewFont As New StdFont

 'Create the new object
 Set ChooseFont1 = New ChooseFont

 With ChooseFont1

 ' Center the dialog on the screen
 .Center = True

 ' Window the dialog will act
 ' modally against (desktop = 0)
 .hWnd = 0

 ' Set the dialog properties
 .FixedPitchOnly = False
 .ShowPrinterFonts = True
 .ShowScreenFonts = True
 .ShowVerticalFonts = True

 ' Show Effects selections
 .ShowEffects = True

 ' Set whether or not to display an error
 ' message if the selected font does not
 ' exist (i.e., no selection made = Error)
 .ForceFontExist = True

 ' Set the Size properties
 .SizeMin = 10
 .SizeMax = 36

 .StrikeOut = False
 .Underline = False

 ' Set the Color property
 .Color = 0

 ' Show the dialog
 .Show

 ' After the dialog is closed,
 ' change the label to the selected font
 With NewFont
 .Bold = ChooseFont1.GetFont.Bold
 .Charset = ChooseFont1.GetFont.Charset
 .Italic = ChooseFont1.GetFont.Italic
 .Name = ChooseFont1.GetFont.Name
 .Size = ChooseFont1.GetFont.Size
 .Strikethrough = ChooseFont1.GetFont.Strikethrough
 .Weight = ChooseFont1.GetFont.Weight
 End With
 End With

 Set SelectFont = NewFont

End Function

Place the following code under the mnuViewFontDayNameFont_Click event on the form:

Private Sub mnuViewFontDayNameFont_Click()

 ' Creat a new font object

 Dim NewDayNameFont As New StdFont

 ' Set the new font object via the Font dialog
 Set NewDayNameFont = SelectFont

 ' Update the calendar's DayNameFont property
 Set Calendar1.DayNameFont = NewDayNameFont

 ' Write the new DayNameFont property to the registry
 SaveSetting "Chapter6", "Startup", "DayNameFontBold", Calendar1.DayNameFont.Bold
 SaveSetting "Chapter6", "Startup", _
 "DayNameFontCharset", Calendar1.DayNameFont.Charset
 SaveSetting "Chapter6", "Startup", _
 "DayNameFontItalic", Calendar1.DayNameFont.Italic
 SaveSetting "Chapter6", "Startup", _
 "DayNameFontName", Calendar1.DayNameFont.Name
 SaveSetting "Chapter6", "Startup", "DayNameFontSize", Calendar1.DayNameFont.Size
 SaveSetting "Chapter6", "Startup", _
 "DayNameFontStrikethrough", Calendar1.DayNameFont.Strikethrough
 SaveSetting "Chapter6", "Startup", _
 "DayNameFontUnderline", Calendar1.DayNameFont.Underline

 ' Update the calendar
 Calendar1.Refresh

End Sub

Place the following code under the mnuViewFontDayFont_Click event on the form:

Private Sub mnuViewFontDayFont_Click()

 ' Create a new font object
 Dim NewDayFont As New StdFont

 ' Set the new font object via the Font dialog
 Set NewDayFont = SelectFont

 ' Update the calendar's DayFont property
 Set Calendar1.DayFont = NewDayFont

 ' Write the new DayFont property to the registry
 SaveSetting "Chapter6", "Startup", "DayFontBold", Calendar1.DayFont.Bold
 SaveSetting "Chapter6", "Startup", "DayFontCharset", Calendar1.DayFont.Charset
 SaveSetting "Chapter6", "Startup", "DayFontItalic", Calendar1.DayFont.Italic
 SaveSetting "Chapter6", "Startup", "DayFontName", Calendar1.DayFont.Name
 SaveSetting "Chapter6", "Startup", "DayFontSize", Calendar1.DayFont.Size
 SaveSetting "Chapter6", "Startup", _
 "DayFontStrikethrough", Calendar1.DayFont.Strikethrough
 SaveSetting "Chapter6", "Startup", "DayFontUnderline", Calendar1.DayFont.Underline

 ' Update the calendar
 Calendar1.Refresh

End Sub

Finally, change the forms Load event by adding the following code:

Private Sub Form_Load()

 SaveSetting "Chapter6", "Startup", "TestSetting", "Test"

 With Calendar1
 ' Set the calendar to today's date
 .Year = Format(Now, "yyyy")
 .Month = Format(Now, "m")
 .Day = Format(Now, "d")

 ' Set the colors
 .DayColor = GetSetting("Chapter6", "Startup", "DayColor", "0")
 .DayNameColor = GetSetting("Chapter6", "Startup", "DayNameColor", "0")

 ' Retrieve the calendar's DayFont settings from the registry
 With .DayFont
 .Bold = GetSetting("Chapter6", "Startup", "DayFontBold", "False")
 .Charset = GetSetting("Chapter6", "Startup", "DayFontCharset", "77")
 .Italic = GetSetting("Chapter6", "Startup", "DayFontItalic", "False")
 .Name = GetSetting("Chapter6", "Startup", "DayFontName", "MS Sans Serif")
 .Size = GetSetting("Chapter6", "Startup", "DayFontSize", "10")
 .Strikethrough = GetSetting("Chapter6", "Startup", _
 "DayFontStrikethrough", "False")
 .Underline = GetSetting("Chapter6", "Startup", "DayFontUnderline", "False")
 End With

 ' Retrieve the calendar's DayNameFont settings from the registry
 With .DayNameFont
 .Bold = GetSetting("Chapter6", "Startup", "DayNameFontBold", "False")
 .Charset = GetSetting("Chapter6", "Startup", "DayNameFontCharset", "77")
 .Italic = GetSetting("Chapter6", "Startup", "DayNameFontItalic", "False")
 .Name = GetSetting("Chapter6", "Startup", "DayNameFontName", "MS Sans Serif")
 .Size = GetSetting("Chapter6", "Startup", "DayNameFontSize", "10")
 .Strikethrough = GetSetting("Chapter6", "Startup", _
 "DayNameFontStrikethrough", "False")
 .Underline = GetSetting("Chapter6", "Startup", "DayNameFontUnderline", "False")
 End With

 End With

End Sub

When you start the program, everything will look as it has before. This is because the
default settings we’ve added in the Load event are the same as the calendar’s default
settings. Select View | Fonts | Day Name Font from the form’s menu bar, and the Font
dialog will appear:

** FontDlg.bmp **

Select a new font from the dialog and click OK. The newly selected font will be
transferred into the DayNameFont property and the calendar’s appearance will be
changed. Repeat the process with the DayFont property.

You may have noticed that changing the color of the selected font in the dialog has no
effect on the font in the calendar.

The StdFont object makes no provision for encapsulation of the color of
the selected font. If we want to still call the Font dialog via a function,
extra code must be written to do so.

This could easily be implemented by adding another parameter to be passed to and from
the SelectFont function.

The System Tray Icon Control
The System Tray Icon Control, Systray.ocx, encapsulates everything necessary to place
an icon in the system tray at any time. It has very few properties and even fewer
events, but since the control itself is to be placed on a form, the control can set any
properties or call any event for the form it’s placed on. Just like the MSVBCalendar
control, this control is supplied as source code , so the first thing we’ll need to do is
build it.

Building The Control
The source code for the System Tray Icon Control is located on the Visual Basic 5 CD in
the \tools\unsupprt\systray directory. These files have their “read-only” property set to
True, so we’ll need to relocate them to the hard drive and change their properties.

Follow these steps to build the control:

1 Copy the files in the \tools\unsupprt\systray directory from the CD to a
directory on the local hard drive. I used e:\vb\Projects\Systray for this
particular project.

2 Highlight all of the files in the new directory. Right-click on the list and select
“Properties” from the resulting pop-up menu.

3 Clear the “Read-only” check box on the General tab and click “OK”.

4 From the Visual Basic 5 IDE, open the project file Systray.vbp. You’ll notice
that there are two files within the project, the module mSystray and the
UserControl cSystray.

5 From the File menu, select “Make SysTray.ocx…”. In the resulting “Make
Project” dialog box, the selected directory will be the project directory. Change
the directory in order to make the file as c:\windows\system\SysTray.ocx and
click “OK”.

The control will then be listed as in the Components dialog as “System Tray Icon
Control”. Select this item in the Chapter6 project so we can use it.

Properties
As I said, the System Tray Icon Control has very few properties (and no functions):

Property Description

Name Name given to the control

Index Returns/sets the number identifying the control in a control array

Left Returns/sets the distance between the left edge of the control and its
container

Tag Stores any extra data

Top Returns/sets the distance between the top edge of the control and its
container

InTray Whether or not the icon is currently visible in the tray

TrayIcon Returns/sets the icon used with the control

TrayTip Returns/sets the control’s tooltip

Events
There are only four events for the control itself, all related to the mouse:

Event Description
MouseDblClick Occurs when a mouse button is double-

clicked
MouseDown Occurs at the end of the down-stroke of a

mouse button
MouseMove Occurs when the mouse is moved over the

icon in the system tray
MouseUp Occurs at the end of the up-stroke of a

mouse button

However, since the three events other than MouseMove also identify the mouse button
that was clicked, that makes for seven individual events … all from single system tray
icon!

Try It Out – The System Tray Icon Control

Setting-Up The Form
Place the System Tray Icon Control onto our form in the Chapter6 project:

** SysTray.bmp **

The first thing we need to do is set the form’s visible property to False, so the icon
shows up in the system tray, ready to make the form appear. Place a menu named
Calendar, with the handle of mnuCalendar, onto the form. Give this menu three items:
Show Calendar (mnuShowCalendar), mnuBar1, and Exit (mnuExit):

** SysMenu.bmp **

Now, go back into the menu editor and set the Visible property for mnuCalendar to False.
Doing so hides this menu, making it a candidate for a popup menu.

The Show Calendar menu item will be used for causing the calendar form itself to be
displayed. Place the following code under the mnuShowCalendar_Click event:

Private Sub mnuShowCalendar_Click()

 ' Show the Calendar form
 Form1.Visible = True

End Sub

This next piece of code goes under the mnuExit_Click event, to do exactly what it says:

Private Sub mnuExit_Click()

 ‘ Exit the program
 End

End Sub

Back on the File menu, this is the code for the mnuFileClose_Click event. This causes
the form to disappear, making it available for later. Notice this doesn’t cause the
program to end, so the icon will still be visible in the system tray:

Private Sub mnuFileClose_Click()

 ' Make the form invisible
 Form1.Visible = False

End Sub

And lastly, this code goes under the control’s MouseDown event. It causes the Calendar
menu to pop up over the icon on the left-click event:

Private Sub cSysTray1_MouseDown(Button As Integer, Id As Long)

 Select Case Button
 Case 1 ' Left button
 PopupMenu mnuCalendar
 Case 2 'Right button
 ' Do nothing
 End Select

End Sub

Setting the Control’s Properties
The control’s properties are set as shown:

** STProp.bmp **

The icon is in the tray by default when the setting for the InTray property is True. The
icon itself is set as needed (I used trffc10a.ico in the VB\Graphics\Icons\Traffic
directory to get the traffic light icon), and the TrayTip property is loaded with the string we
want to be displayed when the mouse hovers over the icon, “Chapter 6 Sample”.

Running the Program
Start the program from the Run menu in the VB IDE and the icon will appear in the
system tray. Notice that the form does not appear. Hover the mouse over the icon and
the tray tip will appear:

** TrayTip.bmp **

Clicking the left mouse button on the icon will cause the popup menu to appear:

** TrayMenu.bmp **

Clicking on Show Calendar will show the form as we’ve been using it all along. Use the
File | Close menu item to close the form, leaving the icon active in the system tray.
Clicking on the Exit menu item on the popup menu will carry out the End command and
close our program.

System Tray Icon Control GUI Notes
The System Tray Icon is a great addition to the GUI environment. It’s small, out of the
way, doesn’t do anything until you need it to, and it’s always there. But be careful. Too
much of a good thing will always ruin it. On a monitor set for 640x480 pixels, I’ve found
confusion after about 4 icons in the system tray. Larger resolutions (600 x 800,
1024x768, or even higher) can support more without much more confusion, but don’t
overdo it.

Summary
At this point you should be ready to tackle more of the unsupported controls and utilities
provided on the Visual Basic CD. In this paper we’ve covered:

A calendar control with extensive capabilities that we can change for our own
custom uses
A better set of methods for implementing most of the common dialogs
A control specifically used for implementing icons in the system tray

