
On Help Systems In General
Updated February 27, 2003

David E. Liske
Delmar Computing Services
Tipton, Michigan, USA

In the eras of Windows 3.x and earlier versions of Windows 95, the
only help system people worked with or even knew about was
WinHelp. Problems started with the transition to Windows 95, when
developers and users alike had to learn to deal with WinHelp 4.0's
separate dialog with the Contents, Index, and Find tabs. (For example,
VB developers still have a difficult time calling the Contents tab from a
program, and the Common Dialog control has yet to be fully
compatible with the WinHelp tabbed dialog.) In 1997, Microsoft
released HTML Help, which has become the standard for Windows 98
and 2000, and is what the MSDN system for Office 2000 and Visual
Studio 6 are based on.

In the time since Windows 95 was released, quite a few help systems
have appeared. RoboHELP allows for the creation of both WinHelp and
HTML Help files. It also is capable of creating what's called WinHelp
2000, which is a WinHelp system that looks and acts like HTML Help. It
also generates WebHelp, a browser-based cross-platform help system
that looks like HTML Help but isn't context-sensitive. Doc2Help can
generate many of the same types of files (except a WinHelp 2000
equivalent), and has a similar cross-platform solution called InterHelp.
The HDK system has been around a long while, and makes an even
more configurable WinHelp solution than WinHelp 2000. There's also
the cross-platform JavaHelp (which both RoboHELP and ForeHelp can
create) and the now-defunct-but-still-available NetHelp, both of which
look and feel like HTML Help but have different technologies
underneath. There are probably even more help systems out there for
proprietary applications. And then there are the man pages used in
Linux ... and UNIX ... and the Mac help system ...

A few questions come from all of this:

A. As a user, which help system do you prefer most or least, and
why? And if given the choice, what would you like to see in a help
system?



B. As a developer, which help system do you most prefer to develop
with, and why? What problems have you seen in implementing various
help systems from specific development languages? And if given the
choice, what would you like to see in a help system?

For example, as a user, I least prefer the MSDN system as
implemented in Office 2000 as it's considerably more clunky than it
needs to be. But as a developer, I use MSDN from the three CD's as it
gives me the information I need. I prefer to develop with HTML Help
since I can be much more creative with it. However, some users don't
like it as a matter of choice simply because it's dependent on IE being
installed on the system (even though IE doesn't need to be the default
browser), so I need to be careful. And when I'm developing controls
for use with VB5, I need to use WinHelp for those users who don't
have IE installed. If they indeed have IE installed, I can use Innovasys
Document! X tool for generating WinHelp stubs that call HTML Help
topics ...

As for what I'd like to see, that would be a fully cross-platform help
system that isn't dependent on anything in particular one way or the
other.

So, what about the need for a help system for any given application?
Is it even necessary? Some managers will argue that since help isn't
used by everyone who uses a given application, it's not cost-effective
to develop help at all.

The single question to ask of such a manager is this: "Would you
rather spend the money now for a decent help system to give the
users what they need to know when they need it, or spend the money
later for a larger support staff to handle the incoming requests for
assistance for this application?"

One of the more common problems in this area is the gap between
developers and help authors. Developers either don't believe help is
necessary (apparently because they believe their applications to be so
incredibly intuitive) or they write it themselves (which throws the
professional help authors for a loop because they apparently don't feel
the developer can be objective to their own work). Help authors feel



there should be a help system of some kind for every application
written.

I'm a developer who's also a help author. I'll side with the help authors
on this last point, while still writing my own help files.

At issue here more than anything is that some user somewhere is
going to need help with your application. Rather than paying a support
person by the hour to sit by the phone and wait for that user to call,
spend the time to ship the support with the application in the form of a
help system. (Don't believe for a moment that such a call can just go
to the developer. Excellent support personnel require more people
skills than most developers are trained to have.) If you're a developer
and you can't be objective, hire someone to write the help for you. If
you'll be writing your own help system, be excruciatingly brutal with
your own work. When you have your application Alpha and Beta
tested, have the testers also test the help system. And when the
comments come in from these testers, throw your ego out the window
and do what's necessary for the user.

Help is a required part of an application. Many times, developers and
managers alike make it the last thing on the list of items to be done.
To be done right, help should be developed concurrently with the
application itself, not as a rushed afterthought. Make your help system
as complete as you possibly can, and when you've run out of things to
include, realize that you've probably missed something, and go over all
of it again.

You'll definitely save money on the support staff in the long run.

©2000, Delmar Computing Services, All Rights Reserved


